p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.55D4, C22⋊Q8⋊4C4, (C22×Q8)⋊3C4, C22.24C4≀C2, C4.12(C23⋊C4), C23.498(C2×D4), (C22×C4).737D4, C23.31D4⋊18C2, C22⋊C8.130C22, C23.53(C22⋊C4), C24.4C4.13C2, (C22×C4).630C23, (C23×C4).208C22, C22⋊Q8.139C22, C2.8(C23.38D4), C22.24(C8.C22), C2.C42.506C22, (C2×C4⋊C4)⋊8C4, C4⋊C4.8(C2×C4), C2.25(C2×C4≀C2), (C2×Q8).7(C2×C4), C2.17(C2×C23⋊C4), (C2×C22⋊Q8).3C2, (C2×C4).1154(C2×D4), (C4×C22⋊C4).10C2, (C2×C4).120(C22×C4), (C22×C4).199(C2×C4), (C2×C4).172(C22⋊C4), C22.184(C2×C22⋊C4), SmallGroup(128,240)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.55D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, faf-1=ac=ca, eae-1=ad=da, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >
Subgroups: 324 in 147 conjugacy classes, 48 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C2×M4(2), C23×C4, C22×Q8, C23.31D4, C4×C22⋊C4, C24.4C4, C2×C22⋊Q8, C24.55D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C4≀C2, C2×C22⋊C4, C8.C22, C2×C23⋊C4, C23.38D4, C2×C4≀C2, C24.55D4
(1 16)(2 13)(3 10)(4 15)(5 12)(6 9)(7 14)(8 11)(17 25)(18 30)(19 27)(20 32)(21 29)(22 26)(23 31)(24 28)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 20)(10 14)(11 22)(12 16)(13 24)(15 18)(17 21)(19 23)(25 29)(27 31)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17 5 21)(2 24 28 13)(3 16 7 12)(4 15 30 18)(6 20 32 9)(8 11 26 22)(10 27 14 31)(19 25 23 29)
G:=sub<Sym(32)| (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,5,21)(2,24,28,13)(3,16,7,12)(4,15,30,18)(6,20,32,9)(8,11,26,22)(10,27,14,31)(19,25,23,29)>;
G:=Group( (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,5,21)(2,24,28,13)(3,16,7,12)(4,15,30,18)(6,20,32,9)(8,11,26,22)(10,27,14,31)(19,25,23,29) );
G=PermutationGroup([[(1,16),(2,13),(3,10),(4,15),(5,12),(6,9),(7,14),(8,11),(17,25),(18,30),(19,27),(20,32),(21,29),(22,26),(23,31),(24,28)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,20),(10,14),(11,22),(12,16),(13,24),(15,18),(17,21),(19,23),(25,29),(27,31)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17,5,21),(2,24,28,13),(3,16,7,12),(4,15,30,18),(6,20,32,9),(8,11,26,22),(10,27,14,31),(19,25,23,29)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 4R | 4S | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | C4≀C2 | C23⋊C4 | C8.C22 |
kernel | C24.55D4 | C23.31D4 | C4×C22⋊C4 | C24.4C4 | C2×C22⋊Q8 | C2×C4⋊C4 | C22⋊Q8 | C22×Q8 | C22×C4 | C24 | C22 | C4 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.55D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 16 |
0 | 0 | 16 | 1 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 16 | 1 | 0 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,16,16,0,0,15,16,1,1,0,0,0,0,0,16,0,0,0,0,16,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,16,16,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,16,0,0,0,0,0,0,0,1,1,0,16,0,0,0,0,0,1,0,0,0,1,0,0,0,0,2,1,16,16],[4,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,16,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0] >;
C24.55D4 in GAP, Magma, Sage, TeX
C_2^4._{55}D_4
% in TeX
G:=Group("C2^4.55D4");
// GroupNames label
G:=SmallGroup(128,240);
// by ID
G=gap.SmallGroup(128,240);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,387,352,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations